Correlative Sparsity in Primal-dual Interior-point Methods for Lp, Sdp and Socp B-434 Correlative Sparsity in Primal-dual Interior-point Methods for Lp, Sdp and Socp
نویسندگان
چکیده
Exploiting sparsity has been a key issue in solving large-scale optimization problems. The most time-consuming part of primal-dual interior-point methods for linear programs, secondorder cone programs, and semidefinite programs is solving the Schur complement equation at each iteration, usually by the Cholesky factorization. The computational efficiency is greatly affected by the sparsity of the coefficient matrix of the equation that is determined by the sparsity of an optimization problem (linear program, semidefinite program or second-order program). We show if an optimization problem is correlatively sparse, then the coefficient matrix of the Schur complement equation inherits the sparsity, and a sparse Cholesky factorization applied to the matrix results in no fill-in.
منابع مشابه
A Polynomial Primal-Dual Path-Following Algorithm for Second-order Cone Programming
Second-order cone programming (SOCP) is the problem of minimizing linear objective function over cross-section of second-order cones and an a ne space. Recently this problem gets more attention because of its various important applications including quadratically constrained convex quadratic programming. In this paper we deal with a primal-dual path-following algorithm for SOCP to show many of ...
متن کاملExploiting Sparsity in Semide nite Programming via Matrix Completion I : General Framework ?
A critical disadvantage of primal-dual interior-point methods against dual interior-point methods for large scale SDPs (semidenite programs) has been that the primal positive semidenite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidenite matrix completion, this article proposes a general method of exp...
متن کاملExploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework
A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general met...
متن کاملOn Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming
This work concerns primal-dual interior-point methods for semideenite programming (SDP) that use a search direction originally proposed by Helmberg-Rendl-Vanderbei-Wolkowicz 5] and Kojima-Shindoh-Hara 11], and recently rediscovered by Monteiro 15] in a more explicit form. In analyzing these methods, a number of basic equalities and inequalities were developed in 11] and also in 15] through diie...
متن کاملExploiting Sparsity in Semideenite Programming via Matrix Completion Ii: Implementation and Numerical Results
In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semideenite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semideenite matrix completion, and it can be embodied in two diierent ways. One is by a con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006